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Thermalization of an anisotropic granular particle
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We investigate the dynamics of a needle in a two-dimensional bath composed of thermalized point particles.
Collisions between the needle and points are inelastic and characterized by a normal restitution caefficient
<1. By using the Enskog-Boltzmann equation, we obtain analytical expressions for the translational and
rotational granular temperatures of the needle and show that these are, in general, different from the bath
temperature. The translational temperature always exceeds the rotational one, though the difference decreases
with increasing moment of inertia. The predictions of the theory are in very good agreement with numerical
simulations of the model.
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[. INTRODUCTION bath particles for which the two are equal.
We also report essentially exact numerical results ob-

The dissipative nature of the collisions in granular sys-tained using a stochastic simulation method. The theory is in
tems leads to fundamentally different behavior from theirvery good agreement with the simulation, which validates
thermal analogs. A striking example is the lack of energythe a_ssumption of the Maxwellian shape of the distribution
equipartition between the degrees of freedom in granular sygunctions.
tems. For example experimerits,2] and computer simula-
tions [3-5] have shown that in binary mixtures of isotropic Il. MODEL
inelastic particles, the granular temperatures of the two spe-

cies are different. infinitely thin needle of lengti., massM, and moment of
These results have prompted theoreticians to investigalj,mje1 ey . gtrt, m -
ifertial immersed in a bath of point particles each of mass

some simple model systems. For example, Martin and Piasrh The vector position of the center of mass of the needle
ecki[6] examined the behavior of a spherical tracer particle_~ P

immersed in a homogeneous fluid in equilibrium at a tem—and a .point 'particle are deno'ted by gndrz, respgctively.

peratureT. They showed that the Enskog-Boltzmann equa-The or|§ntat|on of -the n_eedle Is specified by iumt veator

tion of the tracer particle possesses a stationary Maxwelliaf1at Points along its axis. Let,,=r;—r, andu; denote a

velocity distribution characterized by an effective tempera-Yector perpendicular to;. A collision between a needle and

ture that is smaller tha. a point occurs when
Although many granular systems contain particles that are

manifestly anisotropic, most studies have been confined to

spherical particles. A notable exception is the work of As-anq|)\|<L/2 (see Fig. 1 The relative velocity of the point

pelmeier, Huthmann, and Zippelif$,8] that examines the of contactV is given by

free cooling of an assembly of inelastic needles with the aid

qf a pseudo-L_iouviIIe operator. They predicted an exponen- V=V, AUy, 2)

tially fast cooling followed by a state with a stationary ratio

of translational and rotational energy. This two stage coolingvhereu, denotes the time derivative of.

was confirmed by event driven simulations. h llisional and llisional itidise |
In this work we examine the breakdown of equipartition 1 he Precollisional and postcollisional quantitigise latter

in a steady state granular system containing an anisotrop e labeled with a primeobey t.he usual conservation laws.
particle. Motivated by the studies of Martin and Piasdégi Total momentum conservation

and Aspelmeier, Huthmann, and Zippel[s8], we consider
an infinitely thin inelastic needle immersed in a bath of point
particles. Starting from the collision rules of this model, we  aAngular momentum conservation with respect to the point
derive the Enskog-Boltzmann equation. By assuming that thgf contact

points are thermalized and that the velocity and angular ve-

locity distributions of the needle are Maxwellian, we derive loik=lwk+MNAuyX(vi—Vy), (4)
analytical expressions for the translational and rotational

granular temperatures as a function of the masses of the twaherek is a unit vector perpendicular to the plane such that
species, the moment of inertia of the needle and the normad=u,xuy .

restitution coefficient. Both these temperatures are smaller As a result of the collision, the relative velocity of the
than that of the bath. The rotational granular temperature isontacting points changes instantaneously according to the
usually lower than the translational one, except for very lightfollowing relations:

We examine a two-dimensional system consisting of an

r12-U;=0 @

Mv;+mvy=Mv;+mv,. (3
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FIG. 1. Geometry of the needle and a point in the plang:
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Ill. PSEUDO-LIOUVILLE EQUATION

For particles with hard-core interactions, the kinetic evo-
lution of N-particle distributionf(rN,vV) is described by a

denotes a vector joining the point labeled 2 and the center of thpseudo-LiouviIIe operator, wherd' is a short-hand notation

needle,u; is a unit vector along the axis of the needlejs the

for the positiongand internal degrees of freedom, i.e., angle

algebraic distance between the center of the needle and the point 91‘1 with the x axis for the needleof N particles and/N for
impact anduy is a unit vector perpendicular to the axis of the their velocities(and angular velocities for the neel®rigi-

needle. For a collision to occur one requires {hdtsL/2 when the
point lies on the line defined by the needle, i.e., when @&g.is
satisfied.

V'.up=—aV-ug,

5

V,'U]_:V'Ul, (6)

where o denotes the normal restitution coefficient. For the
sake of simplicity we have taken the tangential restitution
coefficient equal to one. This choice is reflected in the form

of Eq. (6).
By combining Eqs(2)—(5) one obtains, after some alge-
bra, the change of the needle momenttp= M (v; —Vv),

(1+a)V-uj
J‘ _——————
Ap-u;= 1+1+)\2.
m Ml

()

nally derived for spheres and elastic collisid®g, the for-
malism has been extended to systems composed of inelastic
particles. Since collisions are instantanedu®,11], the
pseudo-Liouville operatorL (rN,vN)=L%(r")+ =, T;; is

the sum of the free particle streaming operatdfr") and of

the sum of two-body collision operatof; . Since we are
interested in the homogeneous state, the distribution function
f(vy,w;) of the needle system is described by

df(vy, 1) do, =
T:NJ EJ' dV2j drlezf(Vl,(Ul,Vz),

(10)

where N is the total number of points,(v,,wq,V5) is the

distribution function of the needle and a point, ahg is the
collision operator between a needle and a point.

The assumption of molecular chaos yields a factorization
of the two-body distributiorf (V4 ,wq,V2) =f(Vv{,01) P(V,),
where ®(v,) denotes the point distribution function. Since
the point particles are thermalized, a stationary state for the

The inelastic collision leads to a loss of translational kineticSystem(tracer needle and pointgan be reached, and one

energy,
M
AE]=7 ((v)*=(v1)?)
1 Ap?
SAPVITg 5
V-upvi-up 1 (I+a)3(V-up)?
=—(1+a) >+ — >
1 N 1 A 2M [ 1 N 1 A
mtmT mtmtT
®

and rotational energy,

finally obtains for the needle distribution

| do,[ av. | arTutviwpec -0, ap
where

mv;

27 ) (12

@(vz)fxexp( -

whereT is the temperature of the bath.

To build the point-needle collision operatof,,, one
must include the change in quantitiés., velocity and an-
gular momentumproduced during the infinitesimal time in-
terval of the collision. This operator is different from zero
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only if the two particles are in contact and if the particles A similar equation can be written for rotational kinetic
were approaching just before the collisipf]. The explicit  energy. The needle distribution functidifv,,w,) is then

form of the operator is given by
2
= dfr - ug| Mv? o}
Q _ TR e T P — —
T @ (L/2= [\) (|- ug| = 0%) =3 vy, o)>exp = 505505 (16
d|r o ug| wherey; and yg are the ratios of the translational and rota-
T bi—1), (13 tional needle temperatures to the bath temperature, respec-

tively.

whereb, is an operator that changes precollisional quanti- By inserting Eq(16) in Eq. (15) and in the corresponding

: C o - L equation for the rotational energy one obtains, after some
ties to postcollisional quantities ar@d(x) is the Heaviside . . . . X .
b g (x) tedious but straightforward calculatigoutlined in Appendix

function. . L
The other terms of the collision operator correspond to théo‘)’ the following set of equations:
necessary conditions of contad®(L/2—|\])8(|rqp Uz 1 JTrak@ 1ta (! (1+ake)®?
—07"), and approacl® (— |d|r,- u|/dt]). f dxb = f X . (17
For an isotropic tracer particle in an isotropic particle 0 1+kx? 2 Jo (1+ke)?
bath, Martin and Piaseckb] solved the stationary Enskog-
Boltzmann equation, showing that the velocity distribution 1 Vitak 1+a (1 x¥(1+akx)3?
of the tracer particle remains Gaussian in a thermalized bath. | dxax 1+ k2 2 J; dx (1+kx?)?
It is worth noting that for finite dilutions, the velocity distri- (19)
bution function is not Maxwellia{3], but the deviations
from the Gaussian shape of the distribution function of theyhere
velocities (that can be calculated in a perturbative way
yields small corrections to the estimate of the granular tem- L?
perature. More significant deviations are expected for finite k= 1 1\’ (19)
dilution systemg12]. 41| —+ M
For a mixture of a needle and points, one can show that a m
Maxwell distribution of the needle angular and translational (M+m)
momenta cannot be a solution of the stationary Enskog- a=ypo—, (20)
Boltzmann equation even for the case of an infinitely diluted M+myy
needle. This is due to the fact that the change of momentum
depends on the location of the point of impact on the needi@nd
[the right-hand side of Ed7) depends on\]. However, we M+ m
impose Gaussian distributions for the translational and angu- (22)

b=yr77—7—.
lar velocities of the needle. We show below that this is a very M+myr

good approximation. Exolici . for the i | ina in E
In the stationary state, the loss of translational and rota- xplicit expressions for the integrals appearing in Egs.

tional kinetic energies is on average zero and can be e>{=l7) and(18) are given in Appendix B. Equatiofi8) is an

pressed by means of the collision operator implicit equation fora that, for a given value ofr, can be
solved with standard numerical methods.is then easily

obtained by calculating the ratio of integrals of HG7).
Finally, from the values of andb, y; and ygz can be ob-
tained from Eqs(20) and(21).

(AE])= <?12f(V1 ,01)®(V5)E{(v1))=0,

(AET)=(Tizf (v, 01) D(v2) Ef(01)) =0, (14)
IV. RESULTS
where the brackets denote an average over the independent i .
variables. This corresponds to taking the second moments of e first note that for the elastic case~=1, we have the
the distribution function of the needle. After substitution of Solution a=b=1which gives y;=1 and since a/b
the collision operatofEq. (13)], one obtains explicitly for [:VR/VT’ yr=1 which corresponds to the equilibrium case

the translational kinetic energy 13’_14]- _ .
Figure 2 shows the ratio of the translational temperature

to the bath temperature and of the rotational temperature to
f . f dr,dv,dv,dw,d 6,0 (L/12—|\]) 8(|rp-up|—07) the bath temperature for a homogeneous needle (
=ML?/12) whose mass is equal to the mass of a bath par-
ticle. As the normal restitution coefficient decreases from 1
T to 0 both ratios decrease monotonically from 1 to a strictl
)f(vl’wl)qD(VZ)AEl_o' positive value, such that the translatior)llal temperature is z;/I—
(15  ways larger than the rotational temperature. An analogous

d|r12-uﬂ’ _ dry Uﬂ‘
dt | dt |

051106-3



P. VIOT AND J. TALBOT PHYSICAL REVIEW E69, 051106 (2004

—
0.8+ -
0.6+ =
= =
e ' £
0.4+ -
0.2 -
0 PR IS N S N N 03 I L | | |
0 0.2 0.4 0.6 0.8 1 0 2 4 6 8 10 12
o m/M
FIG. 2. Ratio of the translationdfull curve) y; and rotational FIG. 4. Ratio of the translationdfull curve) y; and rotational

vr (dashed curvegranular temperature to the temperature of theyg (dashed curvegranular temperatures to the temperature of the
bath vs the normal restitution coefficieat for a homogeneous bath vs the ratio of the massagM for a homogeneous needlé (
needle withM =m. =ML?/12) anda=0.9.

situation has been noted for the free cooling of needles ik—0, which givesa=b=(1+ «)/2. Hence, for very light

three dimension§7]. bath particles, equipartition between translational and rota-
Figure 3 shows the same ratios for an inhomogeneoutional granular temperatures is asymptotically obtained and

needle (=ML?/16) corresponding to relatively lighter ends we have

and a heavier center. Again the translational temperature is

always larger than the rotational temperature, and the differ- o 1ta

ences are greater than for a homogeneous needle. The differ- YREYTT

ence between the two temperatures vanishes in the limit of

very large moment of inertia. Contrary to the free coolingThis same limit is obtained for a spherical tracer partjéle

state of needlef7], there is no “critical” value of the mo- We conjecture that the result is independent of the shape of

ment of inertia above which the rotational temperature ishe tracer particle and the dimension.

larger than the translational temperature. Figure 4 displays the variation with the mass ratio of the
We now return to consideration of a homogeneous needlganslational and rotational temperatures of the tracer needle.

and investigate the effect of varying the mass ratibM, at  Note that when the mass of the bath particles is very small

constant normal restitution coefficient. When/M—0,  compared to the needle particle, the two curves go to the

limit given by Eq.(22).

(22

L _ V. SIMULATION

0.8 - In order to assess the accuracy of the theory we developed
a direct simulation monte carlo code to obtain numerical
solutions of the nonlinear homogeneous Boltzmann equation.
0.6 N The simulation generates a sequence of collisions with a
variable time interval between each.

At the beginning of each step, we first calculate the total
0.4~ 7 flux of colliding particles on both sides of the needle which
is a function of the component of the velocity of the center of
mass normal to the length of the neeudleu; and the angu-

TR

0.2¢ ] lar velocity w. Next a waiting time to the next collision is
- . sampled from an exponential distribution with rate constant
ol 111 equal to the total flux. The needle is rotated at its current

0 0.2 0.4 0.6 0.8 1 angular velocity to the point of collision. The location of the
collision is then selected with a probability proportional to
FIG. 3. Ratio of the translationdfull curve) y; and rotational  the position dependent flux. The ratio of the flux on the left-
vr (dashed curvegranular temperature to the temperature of thehand side to the total flux is then compared to a uniform
bath vs the normal restitution coefficieatfor an inhomogeneous random number between zero and one. If the ratio is greater
needle (=ML?/16) with M=m. than the random number, the collision occurs on the right;
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ment with Gaussian distributions at the corresponding theo-
retical granular temperature, confirming the validity of em-
ploying the latter in the theory.

0.1
VI. CONCLUSION

T
Ll

We have shown that the translational and rotational granu-
lar temperatures of an anisotropic tracer particle immersed in
a bath of point particles depend on the ratio of the masses of
a point and the needle and the moment of inertia. They are,
in general, not equal and differ from the bath temperature. In
addition, we found that equipartition is obtained asymptoti-
cally, regardless of the normal restitution coefficient, for very
light bath particles. We expect this to be a general feature,
L i.e., in higher dimensions and for arbitrary shaped aniso-

4 tropic particles. It should be possible to test this prediction
experimentally.
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FIG. 5. Distribution of the normal velocity component of the
needle for two values of the normal restitution coefficient 0.5 ACKNOWLEDGMENT
and a= 0.9 (broader curve The solid(noisy) curves are the simu-
lation results and the dashed curves correspond to Gaussian distE—

- ) . : o]
butions of velocity evaluated for the corresponding theoretical
granular temperature.
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otherwise is occurs on the left. The normal component of the APPENDIX A: NEEDLE AVERAGE ENERGY LOSS

colliding point is then selected from a Gaussian flux. Finally,  as for binary mixtures of spherd8], we use a Gaussian

the collision rules are applied and the normal velocity andynsatz for the distribution functions and introduce two differ-

angular velocity of the needle are updated. ent temperatures corresponding to the translational and rota-
The simulation results for I0collisions per run are com- jgng degrees of freedom of the needle. The homogeneous

pared with the theory in Figs. 2 and 3. Although the theory isgjstribution functions of the needle and of the points are then
not exact, the agreement is excellent. The discrepancy b‘@'ven respectively by

tween simulation and theory is never greater than 1% what-

ever the value of the restitution coefficient. In Fig. 4, when MViyrt lolyrt
the mass of the needle increases, the granular temperatures f(vi,01)~exp — >T 27 ) (A1)
obtained by simulation are slightly smaller than the analyti-
cal result. mv3
Figures 5 and 6 show the translational and angular veloc- <D(v2)~exp< - ﬁ) (A2)

ity distributions, respectively, for two different values of the
normal restitution coefficient (0.5 and 0.9). On the scale ofyhere T is the temperature of the batly; and yg are the
the plot, the simulated distributions are in quantitative agreeratio of the translational and rotational temperatures of the
needle to the bath temperature.

We introduce the vectorg and v such that

1
= ——————(Mvy;+mv,), (A3)

V2T(Myr+m)

mM
=1/ W(Vl— Y1Va). (A4)

The scalar produc? - u; can be expressed as

Voube [ 2T
.ul_ m+|\/|’yT
m M

\/%\/%)"'“f

FIG. 6. Same as shown in Fig. 5, except the angular velocity id_-et us introduceé= w4 \1/2Tyg. The translational energy
shown. loss is given by the formula

Lol Lol

|

(yr—1)x-ug

10 + 7 +Aw;.  (A5)
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APPENDIX B: INTEGRALS
> fdxfdalfdxfdvjdg _ o
p==1 The integrals appearing in Eg$l7) and (18) can be

evaluated explicitly. For completeness, we give below their

2 .l
xexp(—x* == ¢)|V-u| analytical expressions
x@(pV-u{)@(M—E)AEI (AB)
2 ' 1 J1+ak@ a
|1=f dX———= \[Eln(\/aer J1+ak)
Since Eq.(A5) depends only ory-u; andv-u; , one can 1+kx
freely integrate over the direction af for the vectorsy and 1-a (1—a)k
v. The integration ove; can be easily performed. If we + \/Tarctar( \/ 17ak |- (B1)
introduce the three-dimensional vect@sand s with com-
ponents,
The integrall , is defined as
G=(G1,G,,G3)

|_2T L (1+akd)¥?
_1, — S —
Wyrm 77 2= fodx (1+kx?)? (52
\/ A/ A7
Myr+m mm | ) (A7)

and satisfies the equation

and
fld Vi+aks®
X—
$=(8S1,82,83) (X Uz ,»- g ,é). (A8) o 1+dx?
|2=|1—(a—1)k—0I , (B3)
By inserting Eq.(8) in Eq. (A6), the average energy loss can 7 d=k

be rewritten as

which gives

L
p;ﬂ f‘”‘f ds eXp(_SZ>IG~s|®(pG-s)®(|x|—E)

a3/2
o (1+a)Gs [ 2T | . Imy+ l,=—In(y/ak+ V1+ak)
1 1 A2 VMy+m| 7™ M 2 vk

m M +(1 a)Vl+ak 1+a— 2a ’6 [(1-a)k
(1+a)%(G-9)? 20 21+ 2Jk(1-a) 1+ak )’
m Mt
By defining a new coordinate system in which thexis is | _f X V1+ak
parallel toG, one find that the integrals of E¢A9) involve 3 1+ kx?
Gaussian integrals of the form
- = k(f dxy1+akx— ) (B5)
| dsexn-lelshe=s)es 7ol
(A10)
\/ak+ 1-2a
and “ T Jak —=—>+In(Jak+1+ak)
_ 3 _ T3 Vvl—a (1-a)k
J dsexp(—%)(|G|s,) O (£s,) = 8 |G°, (A11) —Warcta Y (B6)

which finally leads to Eq(17). The equation for rotational
energy is derived following exactly the same procedure. Finally, one has
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1 x3(1+akx?)®?
l,= f dXx—————, (B7)
0 (1+kx?)?
which satisfy the algebraic equation
1
l,+ kl4=aJ' dxy1+akx¥+(1—a)l, (B8)
0

PHYSICAL REVIEW E 69, 051106 (2004

which gives
J1+ak(ak—1+2a) +a(3-4a)
l,= KK D) + T In(\/ak+ 1+ ak)
Vl—a(l—4a) [(1—a)k
+ Tarcta Trak | (B9)

[1] R.D. Wildman and D.J. Parker, Phys. Rev. L&8 064301
(2002.

[2] K. Feitosa and N. Menon, Phys. Rev. L8, 198301(2002.

[3] A. Barrat and E. Trizac, Granular Mattdy 57 (2002.

[4] A. Barrat and E. Trizac, Phys. Rev.@b, 051303(2002.

[5] P.E. Krouskop and J. Talbot, Phys. Rev6& 021304(2003.

[6] P.A. Martin and J. Piasecki, Europhys. Let6, 613(1999.

[7] T. Aspelmeier, T.M. Huthmann, and A. Zippelius, @ranular
Gases edited by S. Luding and T. Posch@pringer-Verlag,

[8] M. Huthmann, T. Aspelmeier, and A. Zippelius, Phys. Rev. E
60, 654 (1999.
[9] M.H. Ernst, J.R. Dorfman, W.R. Hoegy, and J.M.J. van Leeu-
wen, PhysicdAmsterdam 45, 127 (1969.
[10] T. van Noije and M. Ernst, iGranular GasegRef.[7]), Chap.
Kinetic Theory of Granular Gases, p. 3.
[11] J.J. Brey, F. Moreno, and J.W. Dufty, Phys. Rev5& 445
(1996.
[12] T. Biben, P.A. Martin, and J. Piaseski, Physica3A0, 308
(2002; A. Santos, Phys. Rev. &7, 051101(2003.

Berlin, 2000, Chap. Free cooling of particles with rotational [13] D. Frenkel and J.F. Maguire, Phys. Rev. Ldff, 1025(1981).

degrees of freedom, p. 31.

[14] D. Frenkel and J. Maguire, Mol. Phy49, 503 (1981).

051106-7



