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Thermalization of an anisotropic granular particle
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We investigate the dynamics of a needle in a two-dimensional bath composed of thermalized point particles.
Collisions between the needle and points are inelastic and characterized by a normal restitution coefficienta
,1. By using the Enskog-Boltzmann equation, we obtain analytical expressions for the translational and
rotational granular temperatures of the needle and show that these are, in general, different from the bath
temperature. The translational temperature always exceeds the rotational one, though the difference decreases
with increasing moment of inertia. The predictions of the theory are in very good agreement with numerical
simulations of the model.
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I. INTRODUCTION

The dissipative nature of the collisions in granular s
tems leads to fundamentally different behavior from th
thermal analogs. A striking example is the lack of ene
equipartition between the degrees of freedom in granular
tems. For example experiments@1,2# and computer simula
tions @3–5# have shown that in binary mixtures of isotrop
inelastic particles, the granular temperatures of the two s
cies are different.

These results have prompted theoreticians to investi
some simple model systems. For example, Martin and P
ecki @6# examined the behavior of a spherical tracer parti
immersed in a homogeneous fluid in equilibrium at a te
peratureT. They showed that the Enskog-Boltzmann equ
tion of the tracer particle possesses a stationary Maxwe
velocity distribution characterized by an effective tempe
ture that is smaller thanT.

Although many granular systems contain particles that
manifestly anisotropic, most studies have been confine
spherical particles. A notable exception is the work of A
pelmeier, Huthmann, and Zippelius@7,8# that examines the
free cooling of an assembly of inelastic needles with the
of a pseudo-Liouville operator. They predicted an expon
tially fast cooling followed by a state with a stationary rat
of translational and rotational energy. This two stage cool
was confirmed by event driven simulations.

In this work we examine the breakdown of equipartiti
in a steady state granular system containing an anisotr
particle. Motivated by the studies of Martin and Piasecki@6#
and Aspelmeier, Huthmann, and Zippelius@7,8#, we consider
an infinitely thin inelastic needle immersed in a bath of po
particles. Starting from the collision rules of this model, w
derive the Enskog-Boltzmann equation. By assuming that
points are thermalized and that the velocity and angular
locity distributions of the needle are Maxwellian, we deri
analytical expressions for the translational and rotatio
granular temperatures as a function of the masses of the
species, the moment of inertia of the needle and the nor
restitution coefficient. Both these temperatures are sma
than that of the bath. The rotational granular temperatur
usually lower than the translational one, except for very lig
1539-3755/2004/69~5!/051106~7!/$22.50 69 0511
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bath particles for which the two are equal.
We also report essentially exact numerical results

tained using a stochastic simulation method. The theory i
very good agreement with the simulation, which valida
the assumption of the Maxwellian shape of the distribut
functions.

II. MODEL

We examine a two-dimensional system consisting of
infinitely thin needle of lengthL, massM, and moment of
inertia I immersed in a bath of point particles each of ma
m. The vector position of the center of mass of the nee
and a point particle are denoted byr1 and r2, respectively.
The orientation of the needle is specified by a unit vectoru1

that points along its axis. Letr125r12r2 and u1
' denote a

vector perpendicular tou1. A collision between a needle an
a point occurs when

r12•u1
'50 ~1!

and ulu,L/2 ~see Fig. 1!. The relative velocity of the point
of contactV is given by

V5v121lu̇1 , ~2!

whereu̇1 denotes the time derivative ofu1.

The precollisional and postcollisional quantities~the latter
are labeled with a prime! obey the usual conservation laws

Total momentum conservation

Mv181mv285Mv11mv2 . ~3!

Angular momentum conservation with respect to the po
of contact

Iv18k5Iv1k1Mlu13~v182v1!, ~4!

wherek is a unit vector perpendicular to the plane such t
k5u13u1

' .
As a result of the collision, the relative velocity of th

contacting points changes instantaneously according to
following relations:
©2004 The American Physical Society06-1
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V8•u1
'52aV•u1

' , ~5!

V8•u15V•u1 , ~6!

wherea denotes the normal restitution coefficient. For t
sake of simplicity we have taken the tangential restitut
coefficient equal to one. This choice is reflected in the fo
of Eq. ~6!.

By combining Eqs.~2!–~5! one obtains, after some alge
bra, the change of the needle momentumDp5M (v182v1),

Dp•u1
'52

~11a!V•u1
'

1

m
1

1

M
1

l2

I

. ~7!

The inelastic collision leads to a loss of translational kine
energy,

DE1
T5

M

2
„~v18!22~v1!2

…

5Dp•v11
1

M

Dp2

2

52~11a!
V•u1

'v1•u1
'

1

m
1

1

M
1

l2

I

1
1

2M

~11a!2~V•u1
'!2

S 1

m
1

1

M
1

l2

I D 2 ,

~8!

and rotational energy,

FIG. 1. Geometry of the needle and a point in the plane:r12

denotes a vector joining the point labeled 2 and the center of
needle,u1 is a unit vector along the axis of the needle,l is the
algebraic distance between the center of the needle and the po
impact andu1

' is a unit vector perpendicular to the axis of th
needle. For a collision to occur one requires thatulu<L/2 when the
point lies on the line defined by the needle, i.e., when Eq.~1! is
satisfied.
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DE1
R5

I

2
„~v18!22~v1!2

…

52
l~11a!

2

V•u1
'~v181v1!

1

m
1

1

M
1

l2

I

52l~11a!
V•u1

'v1

1

m
1

1

M
1

l2

I

1
l2~11a!2~V•u1

'!2

2I S 1

m
1

1

M
1

l2

I D 2 .

~9!

III. PSEUDO-LIOUVILLE EQUATION

For particles with hard-core interactions, the kinetic ev
lution of N-particle distributionf (rN,vN) is described by a
pseudo-Liouville operator, whererN is a short-hand notation
for the positions~and internal degrees of freedom, i.e., ang
u1 with the x axis for the needle! of N particles andvN for
their velocities~and angular velocities for the needle!. Origi-
nally derived for spheres and elastic collisions@9#, the for-
malism has been extended to systems composed of inel
particles. Since collisions are instantaneous@10,11#, the
pseudo-Liouville operatorL(rN,vN)5L0(rN)1( i , j T̄i j is
the sum of the free particle streaming operatorL0(rN) and of
the sum of two-body collision operatorsT̄i j . Since we are
interested in the homogeneous state, the distribution func
f (v1 ,v1) of the needle system is described by

] f ~v1 ,v1!

]t
5NE du1

2p E dv2E dr2T̄12f ~v1 ,v1 ,v2!,

~10!

where N is the total number of points,f (v1 ,v1 ,v2) is the
distribution function of the needle and a point, andT̄12 is the
collision operator between a needle and a point.

The assumption of molecular chaos yields a factorizat
of the two-body distributionf (v1 ,v1 ,v2)5 f (v1 ,v1)F(v2),
whereF(v2) denotes the point distribution function. Sinc
the point particles are thermalized, a stationary state for
system~tracer needle and points! can be reached, and on
finally obtains for the needle distribution

E du1E dv2E dr2T̄12f ~v1 ,v1!F~v2!50, ~11!

where

F~v2!}expS 2
mv2

2

2T D , ~12!

whereT is the temperature of the bath.
To build the point-needle collision operator,T̄12, one

must include the change in quantities~i.e., velocity and an-
gular momentum! produced during the infinitesimal time in
terval of the collision. This operator is different from ze

e

t of
6-2
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only if the two particles are in contact and if the particl
were approaching just before the collision@7#. The explicit
form of the operator is

T̄12}Q~L/22ulu!d~ ur12•u1
'u201!Udur12•u1

'u
dt

U
3QS 2Udur12•u1

'u
dt

U D ~b1221!, ~13!

whereb12 is an operator that changes precollisional qua
ties to postcollisional quantities andQ(x) is the Heaviside
function.

The other terms of the collision operator correspond to
necessary conditions of contactQ(L/22ulu)d(ur12•u1

'u
201), and approachQ(2udur12•u1

'u/dtu).
For an isotropic tracer particle in an isotropic partic

bath, Martin and Piasecki@6# solved the stationary Enskog
Boltzmann equation, showing that the velocity distributi
of the tracer particle remains Gaussian in a thermalized b
It is worth noting that for finite dilutions, the velocity distri
bution function is not Maxwellian@3#, but the deviations
from the Gaussian shape of the distribution function of
velocities ~that can be calculated in a perturbative wa!
yields small corrections to the estimate of the granular te
perature. More significant deviations are expected for fin
dilution systems@12#.

For a mixture of a needle and points, one can show th
Maxwell distribution of the needle angular and translatio
momenta cannot be a solution of the stationary Ensk
Boltzmann equation even for the case of an infinitely dilu
needle. This is due to the fact that the change of momen
depends on the location of the point of impact on the nee
@the right-hand side of Eq.~7! depends onl]. However, we
impose Gaussian distributions for the translational and an
lar velocities of the needle. We show below that this is a v
good approximation.

In the stationary state, the loss of translational and ro
tional kinetic energies is on average zero and can be
pressed by means of the collision operator

^DE1
T&5^T̄12f ~v1 ,v1!F~v2!E1

T~v1!&50,

^DE1
R&5^T̄12f ~v1 ,v1!F~v2!E1

R~v1!&50, ~14!

where the brackets denote an average over the indepen
variables. This corresponds to taking the second momen
the distribution function of the needle. After substitution
the collision operator@Eq. ~13!#, one obtains explicitly for
the translational kinetic energy

E •••E dr2dv1dv2dv1du1Q~L/22ulu!d~ ur12•u1
'u201!

Udur12•u1
'u

dt
UQS 2Udur12•u1

'u
dt

U D f ~v1 ,v1!F~v2!DE1
T50.

~15!
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A similar equation can be written for rotational kinet
energy. The needle distribution functionf (v1 ,v1) is then
given by

f ~v1 ,v1!}expS 2
Mv1

2

2gTT
2

Iv1
2

2gRTD , ~16!

wheregT andgR are the ratios of the translational and rot
tional needle temperatures to the bath temperature, res
tively.

By inserting Eq.~16! in Eq. ~15! and in the corresponding
equation for the rotational energy one obtains, after so
tedious but straightforward calculation~outlined in Appendix
A!, the following set of equations:

E
0

1

dxb
A11akx2

11kx2
5

11a

2 E
0

1

dx
~11akx2!3/2

~11kx2!2
, ~17!

E
0

1

dxax2
A11akx2

11kx2
5

11a

2 E
0

1

dx
x2~11akx2!3/2

~11kx2!2
,

~18!

where

k5
L2

4I S 1

m
1

1

M D , ~19!

a5gR

~M1m!

M1mgT
, ~20!

and

b5gT

M1m

M1mgT
. ~21!

Explicit expressions for the integrals appearing in E
~17! and ~18! are given in Appendix B. Equation~18! is an
implicit equation fora that, for a given value ofa, can be
solved with standard numerical methods.b is then easily
obtained by calculating the ratio of integrals of Eq.~17!.
Finally, from the values ofa and b, gT and gR can be ob-
tained from Eqs.~20! and ~21!.

IV. RESULTS

We first note that for the elastic case,a51, we have the
solution a5b51 which gives gT51 and since a/b
5gR /gT , gR51 which corresponds to the equilibrium ca
@13,14#.

Figure 2 shows the ratio of the translational temperat
to the bath temperature and of the rotational temperatur
the bath temperature for a homogeneous needleI
5ML2/12) whose mass is equal to the mass of a bath p
ticle. As the normal restitution coefficient decreases from
to 0 both ratios decrease monotonically from 1 to a stric
positive value, such that the translational temperature is
ways larger than the rotational temperature. An analog
6-3
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situation has been noted for the free cooling of needles
three dimensions@7#.

Figure 3 shows the same ratios for an inhomogene
needle (I 5ML2/16) corresponding to relatively lighter end
and a heavier center. Again the translational temperatur
always larger than the rotational temperature, and the dif
ences are greater than for a homogeneous needle. The d
ence between the two temperatures vanishes in the lim
very large moment of inertia. Contrary to the free cooli
state of needles@7#, there is no ‘‘critical’’ value of the mo-
ment of inertia above which the rotational temperature
larger than the translational temperature.

We now return to consideration of a homogeneous nee
and investigate the effect of varying the mass ratio,m/M , at
constant normal restitution coefficient. Whenm/M→0,

FIG. 2. Ratio of the translational~full curve! gT and rotational
gR ~dashed curve! granular temperature to the temperature of
bath vs the normal restitution coefficienta for a homogeneous
needle withM5m.

FIG. 3. Ratio of the translational~full curve! gT and rotational
gR ~dashed curve! granular temperature to the temperature of
bath vs the normal restitution coefficienta for an inhomogeneous
needle (I 5ML2/16) with M5m.
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k→0, which givesa5b5(11a)/2. Hence, for very light
bath particles, equipartition between translational and ro
tional granular temperatures is asymptotically obtained
we have

gR5gT5
11a

2
. ~22!

This same limit is obtained for a spherical tracer particle@6#.
We conjecture that the result is independent of the shap
the tracer particle and the dimension.

Figure 4 displays the variation with the mass ratio of t
translational and rotational temperatures of the tracer nee
Note that when the mass of the bath particles is very sm
compared to the needle particle, the two curves go to
limit given by Eq.~22!.

V. SIMULATION

In order to assess the accuracy of the theory we develo
a direct simulation monte carlo code to obtain numeri
solutions of the nonlinear homogeneous Boltzmann equat
The simulation generates a sequence of collisions wit
variable time interval between each.

At the beginning of each step, we first calculate the to
flux of colliding particles on both sides of the needle whi
is a function of the component of the velocity of the center
mass normal to the length of the needlev1•u1

' and the angu-
lar velocity v. Next a waiting time to the next collision is
sampled from an exponential distribution with rate const
equal to the total flux. The needle is rotated at its curr
angular velocity to the point of collision. The location of th
collision is then selected with a probability proportional
the position dependent flux. The ratio of the flux on the le
hand side to the total flux is then compared to a unifo
random number between zero and one. If the ratio is gre
than the random number, the collision occurs on the rig

FIG. 4. Ratio of the translational~full curve! gT and rotational
gR ~dashed curve! granular temperatures to the temperature of
bath vs the ratio of the massesm/M for a homogeneous needle (I
5ML2/12) anda50.9.
6-4
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otherwise is occurs on the left. The normal component of
colliding point is then selected from a Gaussian flux. Fina
the collision rules are applied and the normal velocity a
angular velocity of the needle are updated.

The simulation results for 107 collisions per run are com
pared with the theory in Figs. 2 and 3. Although the theory
not exact, the agreement is excellent. The discrepancy
tween simulation and theory is never greater than 1% w
ever the value of the restitution coefficient. In Fig. 4, wh
the mass of the needle increases, the granular tempera
obtained by simulation are slightly smaller than the anal
cal result.

Figures 5 and 6 show the translational and angular ve
ity distributions, respectively, for two different values of th
normal restitution coefficient (0.5 and 0.9). On the scale
the plot, the simulated distributions are in quantitative agr

FIG. 5. Distribution of the normal velocity component of th
needle for two values of the normal restitution coefficient,a50.5
anda50.9 ~broader curve!. The solid~noisy! curves are the simu
lation results and the dashed curves correspond to Gaussian d
butions of velocity evaluated for the corresponding theoret
granular temperature.

FIG. 6. Same as shown in Fig. 5, except the angular velocit
shown.
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ment with Gaussian distributions at the corresponding th
retical granular temperature, confirming the validity of em
ploying the latter in the theory.

VI. CONCLUSION

We have shown that the translational and rotational gra
lar temperatures of an anisotropic tracer particle immerse
a bath of point particles depend on the ratio of the masse
a point and the needle and the moment of inertia. They
in general, not equal and differ from the bath temperature
addition, we found that equipartition is obtained asympto
cally, regardless of the normal restitution coefficient, for ve
light bath particles. We expect this to be a general featu
i.e., in higher dimensions and for arbitrary shaped ani
tropic particles. It should be possible to test this predict
experimentally.
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APPENDIX A: NEEDLE AVERAGE ENERGY LOSS

As for binary mixtures of spheres@3#, we use a Gaussian
ansatz for the distribution functions and introduce two diffe
ent temperatures corresponding to the translational and r
tional degrees of freedom of the needle. The homogene
distribution functions of the needle and of the points are th
given respectively by

f ~v1 ,v1!;expS 2
Mv1

2gT
21

2T
2

Iv1
2gR

21

2T D , ~A1!

F~v2!;expS 2
mv2

2

2T D , ~A2!

whereT is the temperature of the bath,gT and gR are the
ratio of the translational and rotational temperatures of
needle to the bath temperature.

We introduce the vectorsx andn such that

x5
1

A2T~MgT1m!
~Mv11mv2!, ~A3!

n5A mM

2T~MgT1m!gT
~v12gTv2!. ~A4!

The scalar productV•u1
' can be expressed as

V•u1
'5A 2T

m1MgT
F ~gT21!x•u1

'

1AgTSAm

M
1AM

mD n•u1
'G1lv1. ~A5!

Let us introducej5v1AI /2TgR. The translational energy
loss is given by the formula

tri-
l

is
6-5
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(
p561

E dlE du1E dxE dnE dj

3exp~2x22n22j2!uV•u1
'u

3Q~pV•u1
'!QS ulu2

L

2DDE1
T . ~A6!

Since Eq.~A5! depends only onx•u1
' and n•u1

' , one can
freely integrate over the direction ofu1 for the vectorsx and
n. The integration overu1 can be easily performed. If we
introduce the three-dimensional vectorsG and s with com-
ponents,

G5~G1 ,G2 ,G3!

5SA 2T

MgT1m
~gT21!,

A 2TgT

MgT1m

m1M

AmM
,lA2TgR

I D ~A7!

and

s5~s1 ,s2 ,s3!~x•u1
' ,n•u1

' ,j!. ~A8!

By inserting Eq.~8! in Eq. ~A6!, the average energy loss ca
be rewritten as

(
p561

E dlE ds exp~2s2!uG•suQ~pG•s!QS ulu2
L

2D
3F 2

~11a!G•s

1

m
1

1

M
1

l2

I

A 2T

MgT1mS gTs11AmgT

M
s2D

1
~11a!2~G•s!2

2M S 1

m
1

1

M
1

l2

I D 2G . ~A9!

By defining a new coordinate system in which thez axis is
parallel toG, one find that the integrals of Eq.~A9! involve
Gaussian integrals of the form

E dsexp~2s2!~ uGusz
2!Q~6sz!Gisz5

p

8
uGuGi

~A10!

and

E dsexp~2s2!~ uGusz!
3Q~6sz!5

p

8
uG3u, ~A11!

which finally leads to Eq.~17!. The equation for rotationa
energy is derived following exactly the same procedure.
05110
APPENDIX B: INTEGRALS

The integrals appearing in Eqs.~17! and ~18! can be
evaluated explicitly. For completeness, we give below th
analytical expressions

I 15E
0

1

dx
A11akx2

11kx2
5Aa

k
ln~Aak1A11ak!

1A12a

k
arctanSA~12a!k

11ak D . ~B1!

The integralI 2 is defined as

I 25E
0

1

dx
~11akx2!3/2

~11kx2!2
~B2!

and satisfies the equation

I 25I 12~a21!k

]E
0

1

dx
A11akx2

11dx2

]d
U

d5k

, ~B3!

which gives

I 25
a3/2

Ak
ln~Aak1A11ak!

1
~12a!A11ak

2~11k!

11a22a2

2Ak~12a!
arctanSA~12a!k

11ak D ,

~B4!

I 35E
0

1

dx
x2A11akx2

11kx2

5
1

k S E
0

1

dxA11akx22I 1D ~B5!

5
Aak11

2k

122a

Aak3/2
1 ln~Aak1A11ak!

2
A12a

k3/2
arctanSA~12a!k

11ak D . ~B6!

Finally, one has
6-6
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I 45E
0

1

dx
x2~11akx2!3/2

~11kx2!2
, ~B7!

which satisfy the algebraic equation

I 21kI45aE
0

1

dxA11akx21~12a!I 1 ~B8!
al

05110
which gives

I 45
A11ak~ak2112a!

2k~k11!
1

Aa~324a!

2k3/2
ln~Aak1A11ak!

1
A12a~124a!

2k3/2
arctanSA~12a!k

11ak D . ~B9!
E
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